Chapter 3: Witness

Contents

Chapter 3: Witness#

As is the best practice with circuit building, we will generate evil witnesses to test the soundness of our circuit constraints. It’s always helpful to review the circuit table again:

Step Type

Round

Signals

Setups

x

k

c

xkc

y

output

constraint 1

constraint 2

transition 1

transition 2

MiMC7Step

0th

0

1

1

1

1

n.a.

x+k+c==xkc

xkc^7==y

y==x.next

k==k.next

MiMC7Step

1st

1

1

1

3

2183

n.a.

x+k+c==xkc

xkc^7==y

y==x.next

k==k.next

MiMC7Step

2nd

2183

1

2

2186

2385…0896

n.a.

x+k+c==xkc

xkc^7==y

y==x.next

k==k.next

MiMC7Step

3rd

2385…0896

1

0

2385…0897

1393…5858

n.a.

x+k+c==xkc

xkc^7==y

y==x.next

k==k.next

MiMC7Step

4th-89th

n.a.

x+k+c==xkc

xkc^7==y

y==x.next

k==k.next

MiMC7Step

90th

\(y_{90}\)

n.a.

x+k+c==xkc

xkc^7==y

y==x.next

k==k.next

MiMC7LastStep

output

\(x_{91} = y_{90}\)

1

n.a.

n.a.

\(output = x_{91} + k\)

n.a.

n.a.

n.a.

n.a.

output==x+k

Setup#

We setup the same circuit and witness in Chapter 2 which were successfully verified:

from __future__ import annotations
from chiquito.dsl import Circuit, StepType
from chiquito.cb import eq
from chiquito.util import F

ROUNDS = 91

ROUND_CONSTANTS = [
    0,
    20888961410941983456478427210666206549300505294776164667214940546594746570981,
    15265126113435022738560151911929040668591755459209400716467504685752745317193,
    8334177627492981984476504167502758309043212251641796197711684499645635709656,
    1374324219480165500871639364801692115397519265181803854177629327624133579404,
    11442588683664344394633565859260176446561886575962616332903193988751292992472,
    2558901189096558760448896669327086721003508630712968559048179091037845349145,
    11189978595292752354820141775598510151189959177917284797737745690127318076389,
    3262966573163560839685415914157855077211340576201936620532175028036746741754,
    17029914891543225301403832095880481731551830725367286980611178737703889171730,
    4614037031668406927330683909387957156531244689520944789503628527855167665518,
    19647356996769918391113967168615123299113119185942498194367262335168397100658,
    5040699236106090655289931820723926657076483236860546282406111821875672148900,
    2632385916954580941368956176626336146806721642583847728103570779270161510514,
    17691411851977575435597871505860208507285462834710151833948561098560743654671,
    11482807709115676646560379017491661435505951727793345550942389701970904563183,
    8360838254132998143349158726141014535383109403565779450210746881879715734773,
    12663821244032248511491386323242575231591777785787269938928497649288048289525,
    3067001377342968891237590775929219083706800062321980129409398033259904188058,
    8536471869378957766675292398190944925664113548202769136103887479787957959589,
    19825444354178182240559170937204690272111734703605805530888940813160705385792,
    16703465144013840124940690347975638755097486902749048533167980887413919317592,
    13061236261277650370863439564453267964462486225679643020432589226741411380501,
    10864774797625152707517901967943775867717907803542223029967000416969007792571,
    10035653564014594269791753415727486340557376923045841607746250017541686319774,
    3446968588058668564420958894889124905706353937375068998436129414772610003289,
    4653317306466493184743870159523234588955994456998076243468148492375236846006,
    8486711143589723036499933521576871883500223198263343024003617825616410932026,
    250710584458582618659378487568129931785810765264752039738223488321597070280,
    2104159799604932521291371026105311735948154964200596636974609406977292675173,
    16313562605837709339799839901240652934758303521543693857533755376563489378839,
    6032365105133504724925793806318578936233045029919447519826248813478479197288,
    14025118133847866722315446277964222215118620050302054655768867040006542798474,
    7400123822125662712777833064081316757896757785777291653271747396958201309118,
    1744432620323851751204287974553233986555641872755053103823939564833813704825,
    8316378125659383262515151597439205374263247719876250938893842106722210729522,
    6739722627047123650704294650168547689199576889424317598327664349670094847386,
    21211457866117465531949733809706514799713333930924902519246949506964470524162,
    13718112532745211817410303291774369209520657938741992779396229864894885156527,
    5264534817993325015357427094323255342713527811596856940387954546330728068658,
    18884137497114307927425084003812022333609937761793387700010402412840002189451,
    5148596049900083984813839872929010525572543381981952060869301611018636120248,
    19799686398774806587970184652860783461860993790013219899147141137827718662674,
    19240878651604412704364448729659032944342952609050243268894572835672205984837,
    10546185249390392695582524554167530669949955276893453512788278945742408153192,
    5507959600969845538113649209272736011390582494851145043668969080335346810411,
    18177751737739153338153217698774510185696788019377850245260475034576050820091,
    19603444733183990109492724100282114612026332366576932662794133334264283907557,
    10548274686824425401349248282213580046351514091431715597441736281987273193140,
    1823201861560942974198127384034483127920205835821334101215923769688644479957,
    11867589662193422187545516240823411225342068709600734253659804646934346124945,
    18718569356736340558616379408444812528964066420519677106145092918482774343613,
    10530777752259630125564678480897857853807637120039176813174150229243735996839,
    20486583726592018813337145844457018474256372770211860618687961310422228379031,
    12690713110714036569415168795200156516217175005650145422920562694422306200486,
    17386427286863519095301372413760745749282643730629659997153085139065756667205,
    2216432659854733047132347621569505613620980842043977268828076165669557467682,
    6309765381643925252238633914530877025934201680691496500372265330505506717193,
    20806323192073945401862788605803131761175139076694468214027227878952047793390,
    4037040458505567977365391535756875199663510397600316887746139396052445718861,
    19948974083684238245321361840704327952464170097132407924861169241740046562673,
    845322671528508199439318170916419179535949348988022948153107378280175750024,
    16222384601744433420585982239113457177459602187868460608565289920306145389382,
    10232118865851112229330353999139005145127746617219324244541194256766741433339,
    6699067738555349409504843460654299019000594109597429103342076743347235369120,
    6220784880752427143725783746407285094967584864656399181815603544365010379208,
    6129250029437675212264306655559561251995722990149771051304736001195288083309,
    10773245783118750721454994239248013870822765715268323522295722350908043393604,
    4490242021765793917495398271905043433053432245571325177153467194570741607167,
    19596995117319480189066041930051006586888908165330319666010398892494684778526,
    837850695495734270707668553360118467905109360511302468085569220634750561083,
    11803922811376367215191737026157445294481406304781326649717082177394185903907,
    10201298324909697255105265958780781450978049256931478989759448189112393506592,
    13564695482314888817576351063608519127702411536552857463682060761575100923924,
    9262808208636973454201420823766139682381973240743541030659775288508921362724,
    173271062536305557219323722062711383294158572562695717740068656098441040230,
    18120430890549410286417591505529104700901943324772175772035648111937818237369,
    20484495168135072493552514219686101965206843697794133766912991150184337935627,
    19155651295705203459475805213866664350848604323501251939850063308319753686505,
    11971299749478202793661982361798418342615500543489781306376058267926437157297,
    18285310723116790056148596536349375622245669010373674803854111592441823052978,
    7069216248902547653615508023941692395371990416048967468982099270925308100727,
    6465151453746412132599596984628739550147379072443683076388208843341824127379,
    16143532858389170960690347742477978826830511669766530042104134302796355145785,
    19362583304414853660976404410208489566967618125972377176980367224623492419647,
    1702213613534733786921602839210290505213503664731919006932367875629005980493,
    10781825404476535814285389902565833897646945212027592373510689209734812292327,
    4212716923652881254737947578600828255798948993302968210248673545442808456151,
    7594017890037021425366623750593200398174488805473151513558919864633711506220,
    18979889247746272055963929241596362599320706910852082477600815822482192194401,
    13602139229813231349386885113156901793661719180900395818909719758150455500533,
]


class Mimc7Step(StepType):
    def setup(self):
        self.xkc = self.internal("xkc")
        self.y = self.internal("y")
        self.c = self.internal("c")

        self.constr(eq(self.circuit.x + self.circuit.k + self.c, self.xkc))
        self.constr(
            eq(
                self.xkc
                * self.xkc
                * self.xkc
                * self.xkc
                * self.xkc
                * self.xkc
                * self.xkc,
                self.y,
            )
        )

        self.transition(eq(self.y, self.circuit.x.next()))
        self.transition(eq(self.circuit.k, self.circuit.k.next()))

    def wg(self, x_value, k_value, c_value):
        self.assign(self.circuit.x, F(x_value))
        self.assign(self.circuit.k, F(k_value))
        self.assign(self.c, F(c_value))

        xkc_value = F(x_value + k_value + c_value)
        self.assign(self.xkc, F(xkc_value))
        self.assign(self.y, F(xkc_value**7))


class Mimc7LastStep(StepType):
    def setup(self):
        self.out = self.internal("out")

        self.constr(eq(self.circuit.x + self.circuit.k, self.out))

    def wg(self, x_value, k_value, _):
        self.assign(self.circuit.x, F(x_value))
        self.assign(self.circuit.k, F(k_value))
        self.assign(self.out, F(x_value + k_value))


class Mimc7Circuit(Circuit):
    def setup(self):
        self.x = self.forward("x")
        self.k = self.forward("k")

        self.mimc7_step = self.step_type(Mimc7Step(self, "mimc7_step"))
        self.mimc7_last_step = self.step_type(Mimc7LastStep(self, "mimc7_last_step"))

        self.pragma_first_step(self.mimc7_step)
        self.pragma_last_step(self.mimc7_last_step)
        self.pragma_num_steps(ROUNDS + 1)

    def trace(self, x_in_value, k_value):
        c_value = F(ROUND_CONSTANTS[0])
        x_value = F(x_in_value)

        self.add(self.mimc7_step, x_value, k_value, c_value)

        for i in range(1, ROUNDS):
            x_value += F(k_value + c_value)
            x_value = F(x_value**7)
            c_value = F(ROUND_CONSTANTS[i])

            self.add(self.mimc7_step, x_value, k_value, c_value)

        x_value += F(k_value + c_value)
        x_value = F(x_value**7)

        self.add(self.mimc7_last_step, x_value, k_value, c_value)


mimc7_circuit = Mimc7Circuit()
mimc7_circuit_witness = mimc7_circuit.gen_witness(F(1), F(2))
mimc7_circuit.halo2_mock_prover(mimc7_circuit_witness)

Looking great! Now, we know that the round constants of MiMC7 are a pre-determined array. Because they are added to the result of each round before exponentiated by 7, a small change in any of the round keys should result in a significant change in the hash result, as is expected of a hash function.

To create an evil witness for soundness testing, let’s swap the round constant c of row 90, which is the last row before the output row, from 13602139229813231349386885113156901793661719180900395818909719758150455500533 to 1. You can check that this large string of number is the last element from the ROUND_CONSTANT array.

Because changing one round constant causes cascading changes in other signals and other rows as well, let’s print out the last two rows (or step instances) of the original witness:

print(mimc7_circuit_witness.step_instances[90])
print(mimc7_circuit_witness.step_instances[91])
StepInstance(
			step_type_uuid=116458975580874752856916320351903418890,
			assignments={
				x = 19772642601925508232386889125207430697825779573800034433688041678604067403935,
				k = 2,
				c = 13602139229813231349386885113156901793661719180900395818909719758150455500533,
				xkc = 11486538959899464359527368493107057402939134354284395908899557250178714408853,
				y = 10594780656576967754230020536574539122676596303354946869887184401991294982662
			},
		)
StepInstance(
			step_type_uuid=116459048470784265980739099210029861386,
			assignments={
				x = 10594780656576967754230020536574539122676596303354946869887184401991294982662,
				k = 2,
				out = 10594780656576967754230020536574539122676596303354946869887184401991294982664
			},
		)

From the print out above, it looks like swapping the round constant c for the 90th row will cause xkc and y of the 90th row to change as well. Furthermore, x and out of the output row will also change. Let’s pre-compute these values to swap:

c_row90 = F(1) # 3rd `wg` assignment (index 2) of `MiMC7Step`
xkc_row90 = F(19772642601925508232386889125207430697825779573800034433688041678604067403935 + 2 + 1) # 4th `wg` assignment (index 3) of `MiMC7Step`
y_row90 = F(xkc_row90**7) # 5th `wg` assignment (index 4) of `MiMC7Step`
x_row91 = y_row90 # 1st `wg` assignment (index 0) of `MiMC7LastStep`
out_row91 = F(x_row91 + 2) # 3th `wg` assignment (index 2) of `MiMC7LastStep`

Let’s now create the evil_witness using the evil_witness_test again, which requires three inputs:

  • step_instance_indices should be [90, 90, 90, 91, 91] for our 5 values to swap, 3 of which is from the 90th row and 2 of which is from the output row.

  • assignment_indices should be [2, 3, 4, 0, 2], corresponding to the order (index) of assignment of our 5 values to swap in their respective step types.

  • rhs are essentially the 5 values to swap we computed above.

Call the function and print the last two rows of the evil witness to confirm successful swaps:

evil_witness = mimc7_circuit_witness.evil_witness_test(step_instance_indices=[90, 90, 90, 91, 91], assignment_indices=[2, 3, 4, 0, 2], rhs=[c_row90, xkc_row90, y_row90, x_row91, out_row91])

print(evil_witness.step_instances[90])
print(evil_witness.step_instances[91])
StepInstance(
			step_type_uuid=116458975580874752856916320351903418890,
			assignments={
				x = 19772642601925508232386889125207430697825779573800034433688041678604067403935,
				k = 2,
				c = 1,
				xkc = 19772642601925508232386889125207430697825779573800034433688041678604067403938,
				y = 2038891600805023480257114900259151954044463841564468389732305079234997849132
			},
		)
StepInstance(
			step_type_uuid=116459048470784265980739099210029861386,
			assignments={
				x = 2038891600805023480257114900259151954044463841564468389732305079234997849132,
				k = 2,
				out = 2038891600805023480257114900259151954044463841564468389732305079234997849134
			},
		)

Looking exactly as we wanted! However, this evil witness can’t possibly pass the circuit had we constructed the circuit correctly, because the hash output value out = 2038891600805023480257114900259151954044463841564468389732305079234997849134 is significantly different from our expected output value of 10594780656576967754230020536574539122676596303354946869887184401991294982664.

Now, generate and verify the proof with evil_witness, hoping that it would fail:

mimc7_circuit.halo2_mock_prover(evil_witness)
Ok(
    (),
)

It didn’t fail! What happened?

It turns out that we don’t have any constraints for c to take the values in ROUND_CONSTANTS to start with. It would be quite difficult to add them, however, as each round has a different round constant, and we would essentially need to create 91 different step types plus the last step for the output row to accommodate the round constant constraints. What should we do? Keep reading the next chapter to find out!